Fast & Slow
Tachy & Brady
Arrhythmias

DAVID STULTZ, MD, FACC
KPN HEART & VASCULAR
AUGUST 7, 2017
CARDIAC CONDUCTION SYSTEM

- Sinoatrial node
- Bundle of His
- Atrioventricular node
- Right bundle branch
- Right ventricle
- Left atrium
- Left bundle branch
- Left anterior hemibundle
- Left posterior hemibundle
- Left ventricle

© 2004 Elsevier Ltd - Cardiology 2E, edited by Crawford, DiMarco and Paulus. All rights reserved.
TABLE 9-2 Normal Values for Durations of Electrocardiographic Waves and Intervals in Adults

<table>
<thead>
<tr>
<th>Wave/Interval</th>
<th>Duration (msec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P wave duration</td>
<td><120</td>
</tr>
<tr>
<td>PR interval</td>
<td><120</td>
</tr>
<tr>
<td>QRS duration</td>
<td><110-120*</td>
</tr>
<tr>
<td>QT interval (corrected)</td>
<td>≥440-460*</td>
</tr>
</tbody>
</table>

*See text for further discussion.
Normal EKG
EKG boxes

- Heart Rate
 - 1 big box = 200ms
 - 1 small box = 40ms

<table>
<thead>
<tr>
<th>Big Boxes Between QRS complexes</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart Rate (300/big boxes)</td>
<td>300</td>
<td>150</td>
<td>100</td>
<td>75</td>
<td>60</td>
<td>50</td>
<td>42</td>
</tr>
</tbody>
</table>
1st Degree AV Block

- >200 ms from onset of P wave to onset of QRS
2nd Degree AV Block
Type 1 - Wenkebach

- P-R interval prolongs until QRS is dropped
2nd Degree AV Block
Type 1 - Wenkebach
2nd Degree Heart Block
Type 2

- PR interval remains constant, QRS drops unexpectedly
2nd Degree Heart Block
Type 2
3rd degree Heart Block

- P rate faster than QRS rate
- No correlation between P's and QRS
Bundle Branch Blocks

- Right Bundle Branch Block
 - QRS duration >120ms (3 small boxes)
 - rsR’ in V1
 - ‘Rabbit Ears’
Bundle Branch Blocks

- Left Bundle Branch Block
 - QRS duration >120ms (3 small boxes)
 - R in V6
<table>
<thead>
<tr>
<th></th>
<th>V₁</th>
<th>V₆</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RBBB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LBBB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bundle Branch Block Criteria

TABLE 9-7 Common Diagnostic Criteria for Bundle Branch Blocks

Complete left bundle branch block
- QRS duration ≥ 120 msec
- Broad, notched R waves in lateral precordial leads (V₅ and usually leads I and aV₁)
- Small or absent initial r waves in right precordial leads (V₂) followed by deep S waves
- Absent septal q waves in left-sided leads
- Prolonged intrinsicoid deflection (>60 msec) in V₅ and V₆

Complete right bundle branch block
- QRS duration ≥ 120 msec
- Broad, notched R waves (rSr', rsR', or rSR' patterns) in precordial leads (V₁ and V₂)
- Wide and deep S waves in left precordial leads (V₅ and V₆)

*Criterion required by some authors.

Copyright © 2005 by Elsevier Inc.
Axis
Left Anterior Fascicular Block

- Frontal Axis -45 to -90 degrees
- QRS <120ms
- rS pattern in II, II, aVF (inferior leads)
LAFB + RBBB
Left Posterior Fascicular Block

- Frontal Axis +/-120 degrees (typically right axis deviation)
- QRS <120ms
- RS in II, Rs in I, qR in III, R in V6 (inferior leads)
Fascicular Blocks

QRS Duration <120ms

LAHB (LAFB)
Severe LAD without explanation
- Deep S waves in II, III, aVF
- Frontal Axis <-45 to -60 degrees
- Positive in I, Negative in aVF
- Not explained by LBBB, LVH, inferior infarct

LPHB (LPFB)
Opposite of LAFB, Rare
- Usually Right Axis deviation
- Negative in I, Positive in aVF
- Positive in II, III, aVF
- Not explained by RVH, anterolateral infarct

Schedit, S. Basic Electrocardiography. CIBA-GEIGY Pharmaceuticals, USA, p 49.
<table>
<thead>
<tr>
<th>Intrinsic causes</th>
<th>Congenital</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sclerodegenerative</td>
</tr>
<tr>
<td></td>
<td>Ischemia</td>
</tr>
<tr>
<td></td>
<td>Trauma (surgical)</td>
</tr>
<tr>
<td></td>
<td>Connective tissue disorders</td>
</tr>
<tr>
<td></td>
<td>Tumors</td>
</tr>
<tr>
<td></td>
<td>Sarcoidosis</td>
</tr>
<tr>
<td>Extrinsic causes</td>
<td>Drugs</td>
</tr>
<tr>
<td></td>
<td>Autonomic disorders</td>
</tr>
<tr>
<td></td>
<td>Hypothyroidism</td>
</tr>
</tbody>
</table>
21 year old white female presents to the emergency room with palpitations for 1 hour
Mild lightheadedness, no syncope
No significant past medical history
No meds except OCP
Cramming for exams, took no doze and Red Bull this morning after pulling an all-nighter
After intervention
...

[Electrocardiogram image with annotations]
General Mechanism of Nodal Dependent SVT

- Two Conduction Paths
 - Different conduction velocities
 - Different Refractory periods
- Faster conduction = longer refractory period
- AVNRT – two paths are within the AV node
- AVRT – one path is nodal, one is accessory
AVNRT

Sinus Rhythm
Slow → Fast

Common Atrioventricular Nodal Reentrant Tachycardia
Slow → Fast

Uncommon Atrioventricular Nodal Reentrant Tachycardia
Slow → Fast

Atrioventricular node

Lead II

RP' < P'R

RP' > P'R
AV Node Reentrent Tachycardia

AVNRT

- 60% of all SVT's (most common)
- 70% are female
- Mostly patients age 30-40's
- 90% Typical (Slow-Fast)
 - Antegradde limb has slow conduction, retrograde is fast
- 10% Atypical
 - Fast-Slow
 - Slow-Slow
 - Fast-Fast
Typical AVNRT

- Starts with PAC
 - Fast path is refractory, so PAC is blocked
 - Slow path (short refractory period) is able to conduct
- PAC impulse conducted to ventricles by slow path
- PAC impulse simultaneously conducted up fast path (no longer refractory) in a retrograde fashion
- Atrial depolarization occurs simultaneous with Ventricular depolarization
EKG Features of AVNRT

- P waves either hidden in QRS or appear as part of QRS
 - Pseudo R in V1
 - Pseudo S in II, III, avF
 - P waves negative in inferior leads
AVNRT with pseudo S wave
AVNRT with pseudo R waves
Breaking a tachycardia

- Vagal Maneuvers (Valsalva, Carotid Massage)
- AV blocking drugs (Adenosine, Verapamil)
- AV node dependent tachycardias will break
 - If SVT terminates with a P wave then it is AVNRT or AVRT
 - If it terminates with a QRS, this is not discriminatory
- If it doesn’t break with above maneuvers it is most likely atrial tachycardia
Acute Management of SVT

- Vagal Maneuvers
 - Carotid Massage
 - Valsalva
 - Cold water immersion
 - Gag reflex
- Adenosine 6mg IV/12mg IV
- Verapamil 5-10mg IV / Diltiazem 10-20mg IV
 - Use digoxin 0.25-0.5mg IV instead if CHF is known
- Procainamide 1g IV / Amiodarone 150-300mg IV
- Synchronized cardioversion (start at 50J)
SVT Breaking with adenosine
Longterm Management of AVNRT

- No therapy if limited symptoms or infrequent episodes
 - Lifestyle modification – avoid caffeine/stimulants
 - Vagal maneuvers prn
- AV node dependent tachycardias (AVNRT)
 - Verapamil, Beta Blockers
 - Antiarrhythmics rarely used
- Ablation therapy
Another case...

- 25 year old male with palpitations
- 1 episode of syncope in teens
- No other significant past medical history
- No medications
Wide complex tachycardia
After Intervention
AV Reentrant Tachycardia
AVRT

- Second most common SVT
- Uses accessory path of Myocardial tissue connecting atrium and ventricle
 - >50% left free wall
 - 20-30% posteroseptal
 - 10-20% right free wall
 - 5-10% anteroseptal
- Paths most commonly conduct bidirectionally but may be solely antegrade or retrograde
- Accessory paths are usually fast conduction
Accessory Pathways

- Antegrade conduction path
 - In normal conduction, ventricles activated 1st by accessory path and 2nd by normal AV-His conduction
 - Preexcited ventricle, short P-R interval, delta wave
 - Variable degree of preexcitation amongst individuals
 - Preexcitation can me modulated by antiarrythmics, autonomic tone

- Retrograde conduction path (25%)
 - Concealed pathways, not apparent on normal EKG
 - Large electrical loop, slower rates than AVNRT
Types of AVRT

- SVT initiated by PAC or PVC
- Orthodromic AVRT
 - Uses AV node as antegrade limb, accessory path conducts retrograde
 - Common
 - EKG shows no delta wave
 - *(Typically Narrow Complex)*
- Antidromic AVRT
 - Accessory path is antegrade, AV node retrograde
 - Uncommon
 - EKG shows preexcitation *(Wide Complex)*
 - May involve multiple bypass tracts (rare)
Antidromic AVRT

Antegrade conduction from left paraseptal bypass tract, retrograde conduction through AV node
Acute management of WPW

- If narrow complex, regular tachycardia, management identical to AVNRT
- If wide complex and regular
 - Consider VT
 - Avoid calcium channel blockers (verapamil)
 - Vagal maneuvers, adenosine, beta blockers, cardioversion
17 yo male with palpitations and lightheadedness after playing soccer
Acute management of WPW

- If narrow complex, regular tachycardia, management identical to AVNRT
- If wide complex and regular
 - Consider VT
 - Avoid calcium channel blockers (verapamil)
 - Vagal maneuvers, adenosine, beta blockers, cardioversion
- If wide complex and irregular (Atrial fibrillation with WPW)
 - Procainamide
 - Cardioversion
 - Avoid all negative chronotropes!!
Therapy for WPW

- Catheter ablation of the accessory pathway for symptomatic patients
- Asymptomatic patients with delta wave
 - No palpitations, syncope, family history of sudden death
 - No specific therapy unless symptoms develop
 - Exception may be for airline pilots, police officers, and firefighters, high level competitive athletes; may prefer catheter ablation
Ventricular tachycardia

- Wide complex, regular tachycardia
- May be “stable” or unstable
- A word on wide complex tachycardias
 - For any regular, wide complex tachycardia, assume VT until proven otherwise!
 - Look for old Bundle Branch Block
 - Consider “SVT with aberrenacy”
 - WPW?
Etiology of symptomatic recurrent VT

- Ischemic heart disease (>50%)
- Cardiomyopathy (both congestive and hypertrophic)
- Primary electrical disease
 - hypo/hyperkalemia
 - hypomagnesemia
- Mitral valve prolapse
- Valvular heart disease
- Congenital heart disease
- Miscellaneous causes
Case VT

- 54 yo AAM admitted with chest pain, SOB
 - Multiple admissions for same over past several years
- ESRD, HD
- Hx CABG 2 years ago; recent EF 38%
 - Recent cath showed patent grafts
- Code Blue
 - VT, defibrillated, bradycardia
- CTSP following code
Baseline EKG
EKG following code
EKG next evening...
Rhythm Strip
During the course of a tachycardia characterized by widespread, abnormal QRS complexes, the presence of fusion beats and capture beats provides maximum support for the diagnosis of VT.
Acute management of VT

- Pulseless
 - ACLS protocol
 - 360J unsynchronized shock
 - Amiodarone
 - Epinephrine
- Hypotensive/unstable (but with pulse)
 - 50J synchronized shock
- Stable (No VT is really stable)
 - Amiodarone or lidocaine or other antiarrhythmic
 - 50J synchronized shock
52 year old female with 1.5 hours of chest pressure, palpitations, shortness of breath, lightheadedness, +/- diaphoresis

No significant past medical history, no significant medications, nonsmoker, no DM or HTN

No family history of atherosclerosis or sudden cardiac death

drinks about 4 glasses of wine daily, under a lot of stress recently; denies illicits/OTC's

Typically walks several miles, no dyspnea, no chest pain; never had syncope or symptoms like this

Initial cardiac enzymes negative, no other labs available
Cardiac Catheterization Normal
Echocardiogram Normal
Diagnosed with idiopathic Left Ventricular Outflow Tract VT
(Right bundle branch block + Left Axis Deviation)
Managed on Metropolol 25mg po bid
Had Treadmill stress test 2 weeks later without arrhythmia
Torsades de Pointes

- Twisting of Points
- Management similar to monomorphic VT
- More often associated with Long Q-T syndrome
 - Medication induced or congenital
 - Think Tikosyn (dofetilide)
- Remember hypokalemia/hypomagnesemia as causes!
Initiation of polymorphic VT
Long-short-long cycle of QRS with R on T
Another Torsades...
Acute treatment of Torsades

- Acquired Long QT (ie medication induced)
 - IV Magnesium
 - Temporary pacing (high rate)
 - Isoproterenol (to increase heart rate)
 - IV Lidocaine
 - Mexiletine
 - Phenytoin
- Congenital Long QT
 - Beta Blocker
 - Pacemaker/ICD
You are called from 3N...

Pseudo-Ventricular Tachycardia (artifact)
And now to Slow it down....
1st Degree AV Block

- >200 ms from onset of P wave to onset of QRS
2nd Degree AV Block
Type 1 - Wenkebach

- P-R interval prolongs until QRS is dropped
2nd Degree Heart Block
Type 2

- PR interval remains constant, QRS drops unexpectedly
3rd degree Heart Block

- P rate faster than QRS rate
- No correlation between P’s and QRS
50ish year old white female
No cardiac history
Admitted 2 weeks ago at outside hospital for syncope
Watched for 2 days, diagnosed with possible seizures, had “negative” echo
Recurrent syncope, admitted to KMC
Later that night....
Board Pearls for Heart Block

- Think of potential causes of heart block
 - Lyme disease
 - Sarcoidosis
 - Drug overdose
 - Hyperkalemia
 - Hypothyroidism
Another case...

- 75 year old male admitted with syncope
- No significant past medical history or medications
- Nothing on telemetry overnight...
NSR \Rightarrow 20 second asystole
Atrial fibrillation ➔ Asystole
