Heart Failure Update

David Stultz, MD
August 16, 2006
DID YOU HAVE A CHANCE TO REVIEW MY POWERPOINT PRESENTATION?

IT'S FULL OF TECHNICAL JARGON AND IT'S WAY TOO LONG.

DID YOU EVEN LOOK AT IT?

WHY WOULD I LOOK AT SOMETHING LIKE THAT?

OUR CEO ONLY HAS FIVE MINUTES. IS THAT ENOUGH TIME FOR YOUR POWERPOINT PRESENTATION?

NO. AN INCOMPLETE EXPLANATION OF THE SITUATION WILL CAUSE MASSIVELY HARMFUL STRATEGIC CHOICES.

WHAT CAN WE GET FOR FOUR-AND-A-HALF MINUTES?
Overview

• Background on Heart Failure
• Established therapies for systolic heart failure
• Recent investigational approaches to systolic heart failure
• Quick summary of diastolic heart failure
• Lots of Trial Data!

ACC Heart Failure Guidelines will be cited where appropriate
What is Heart Failure?

- Heart failure is a complex clinical syndrome that can result from any structural or functional cardiac disorder that impairs the ability of the ventricle to fill with or eject blood.

- The cardinal manifestations of HF are dyspnea and fatigue, which may limit exercise tolerance, and fluid retention, which may lead to pulmonary congestion and peripheral edema.

(c) 2000-2008 David Stultz, MD
How to classify heart failure?

- Acute decompensated v Chronic
- Systolic v Diastolic dysfunction
- Low output v High output
- Ischemic v Nonischemic
- Medical v Device therapy
- Warm-Dry v Cold-Wet
Classification of Recommendations

- **Class I**: Conditions for which there is evidence and/or general agreement that a given procedure or treatment is beneficial, useful, and effective.
- **Class II**: Conditions for which there is conflicting evidence and/or a divergence of opinion about the usefulness/efficacy of a procedure or treatment.
 - **Class IIa**: Weight of evidence/opinion is in favor of usefulness/efficacy.
 - **Class IIb**: Usefulness/efficacy is less well established by evidence/opinion.
- **Class III**: Conditions for which there is evidence and/or general agreement that a procedure/treatment is not useful/effective and in some cases may be harmful.

Level of Evidence

- **Level of Evidence A**: Data derived from multiple randomized clinical trials or meta-analyses.
- **Level of Evidence B**: Data derived from a single randomized trial, or nonrandomized studies.
- **Level of Evidence C**: Only consensus opinion of experts, case studies, or standard-of-care.
Classification Schemes
New York Heart Association

- **Class I** - No symptom limitation with ordinary physical activity
- **Class II** - Ordinary physical activity somewhat limited by dyspnea (ie, long distance walking, climbing 2 flights of stairs)
- **Class III** - Exercise limited by dyspnea at mild work loads (ie, short distance walking, climbing one flight of stairs)
- **Class IV** - Dyspnea at rest or with very little exertion
Classification Schemes

ACC/AHA Stages

A High risk for developing heart failure
 • Hypertension, diabetes mellitus, CAD, family history of cardiomyopathy

B Asymptomatic heart failure
 • Previous MI, LV dysfunction, valvular heart disease

C Symptomatic heart failure
 • Structural heart disease, dyspnea and fatigue, impaired exercise tolerance

D Refractory end-stage heart failure
 • Marked symptoms at rest despite maximal medical therapy
ACC/AHA Heart Failure Stage

Stage A
At high risk for heart failure but without structural heart disease or symptoms of HF

- Patients with:
 - Hypertension
 - Coronary artery disease
 - Diabetes mellitus
 - or
 - Patients Using cardiotoxins
 - With FHx CM

Stage B
Structural heart disease but without symptoms of HF

- Patients with:
 - Previous MI
 - LV systolic dysfunction
 - Asymptomatic valvular disease

Stage C
Structural heart disease with prior or current symptoms of HF

- Patients with:
 - Known structural heart disease
 - Shortness of breath and fatigue, reduced exercise tolerance

Stage D
Refractory HF requiring specialized interventions

- Patients who have marked symptoms at rest despite maximal medical therapy (e.g., those who are recurrently hospitalized or cannot be safely discharged from the hospital without specialized interventions)

Therapy

- **Stage A**
 - Treat hypertension
 - Encourage smoking cessation
 - Treat lipid disorders
 - Encourage regular exercise
 - Discourage alcohol intake, illicit drug use
 - ACE inhibition in appropriate patients

- **Stage B**
 - All measures under stage A
 - ACE inhibitors in appropriate patients
 - Beta blockers in appropriate patients

- **Stage C**
 - All measures under stage A
 - Drugs for routine use; Diuretic
 - ACE inhibitors
 - Beta blockers
 - Digitalis
 - Dietary salt restriction

- **Stage D**
 - All measures under stages A, B, and C
 - Mechanical assist devices
 - Heart transplantation
 - Continuous (not intermittent) IV inotropic infusion for palliation
 - Hospice care

(c) 2000-2008 David Stultz, MD

Copyright © 2005 by Elsevier Inc.
Rising Prevalence of Heart Failure

Actual and estimated prevalence of CHF between the years 1950 and 2050

Copyright © 2005 by Elsevier Inc.
Rising prevalence of Heart Failure with Aging
Rising Discharges for Heart Failure

Discharges in thousands

Years

Copyright © 2005 by Elsevier Inc.
Survival in Stage 3 or 4 Heart Failure vs Transplant
Workup of Heart Failure

- Suggestive symptoms of physical findings
- Suggestive or diagnostic chest x-ray
 - ↑ BNP or proBNP
 - Suggestive biochemical data

- Echocardiogram
 - Systolic dysfunction
 - Diastolic dysfunction
 - Valvular abnormalities
 - Pericardial abnormalities

- More precise measurements of LV, RV function (nuclear, MR techniques)

- Cardiac catheterization
 - Coronary angiography ± biopsy

- Peak VO₂
High Output Heart Failure

TABLE 22-7 High-Cardiac Output States

<table>
<thead>
<tr>
<th>Anemia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acquired arteriovenous fistulas</td>
</tr>
<tr>
<td>Traumatic</td>
</tr>
<tr>
<td>Iatrogenic</td>
</tr>
<tr>
<td>Infectious</td>
</tr>
<tr>
<td>Surgical (hemodialysis)</td>
</tr>
<tr>
<td>Atherosclerotic</td>
</tr>
<tr>
<td>Malignancy</td>
</tr>
<tr>
<td>Congenital arteriovenous fistulas</td>
</tr>
<tr>
<td>Hemangiomas</td>
</tr>
<tr>
<td>Hereditary hemorrhagic telangiectasia</td>
</tr>
<tr>
<td>Hepatic hemangioendothelioma</td>
</tr>
<tr>
<td>Thyrotoxicosis</td>
</tr>
<tr>
<td>Beriberi heart disease</td>
</tr>
<tr>
<td>Paget disease of bone</td>
</tr>
<tr>
<td>Fibrous dysplasia</td>
</tr>
<tr>
<td>Multiple myeloma</td>
</tr>
<tr>
<td>Polycythemia vera</td>
</tr>
<tr>
<td>Carcinoid syndrome</td>
</tr>
<tr>
<td>Acromegaly</td>
</tr>
<tr>
<td>Pregnancy</td>
</tr>
</tbody>
</table>

Copyright © 2005 by Elsevier Inc.
Systolic vs Diastolic Heart Failure

- Heart failure with low left ventricular ejection fraction vs normal ejection fraction
- Prevalence is approximately equal
- Etiologies are different
- Multiple clinical trials for systolic heart failure
- One randomized placebo controlled pharmaceutical trial for heart failure with preserved LVEF
Development of Systolic Heart Failure

Copyright © 2005 by Elsevier Inc.
Etiologies of Heart Failure

<table>
<thead>
<tr>
<th>General Cause</th>
<th>Specific Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pericardial</td>
<td>Tamponade, pericardial constriction</td>
</tr>
<tr>
<td>Valvular</td>
<td>Aortic or mitral regurgitation</td>
</tr>
<tr>
<td>Myocardial</td>
<td>Idiopathic dilated cardiomyopathy, familial dilated cardiomyopathy, ischemic cardiomyopathy, valvular cardiomyopathy</td>
</tr>
<tr>
<td>Coronary vascular</td>
<td>Acute ischemic episodes</td>
</tr>
<tr>
<td>Rhythm disturbances</td>
<td>Tachycardia-induced heart failure</td>
</tr>
</tbody>
</table>

Copyright © 2005 by Elsevier Inc.
Framingham Criteria for Heart Failure

TABLE 22–1 Framingham Criteria for Heart Failure*

<table>
<thead>
<tr>
<th>Major Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paroxysmal nocturnal dyspnea</td>
</tr>
<tr>
<td>Neck vein distention</td>
</tr>
<tr>
<td>Rales</td>
</tr>
<tr>
<td>Radiographic cardiomegaly</td>
</tr>
<tr>
<td>Acute pulmonary edema</td>
</tr>
<tr>
<td>S₃ gallop</td>
</tr>
<tr>
<td>Increased central venous pressure > 16 cm H₂O</td>
</tr>
<tr>
<td>Circulation time ≥ 25 sec</td>
</tr>
<tr>
<td>Hepatojugular reflux</td>
</tr>
<tr>
<td>Pulmonary edema, visceral congestion, or cardiomegaly at autopsy</td>
</tr>
<tr>
<td>Weight loss ≥ 4.5 kg in 5 days in response to treatment of heart failure</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minor Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bilateral ankle edema</td>
</tr>
<tr>
<td>Nocturnal cough</td>
</tr>
<tr>
<td>Dyspnea on ordinary exertion</td>
</tr>
<tr>
<td>Hepatomegaly</td>
</tr>
<tr>
<td>Pleural effusion</td>
</tr>
<tr>
<td>Decrease in vital capacity by one third from maximal value recorded</td>
</tr>
<tr>
<td>Tachycardia (rate ≥ 120 beats/min)</td>
</tr>
</tbody>
</table>

*The diagnosis of heart failure in this study required that two major or one major and two minor criteria be present concurrently. Minor criteria were acceptable only if they could not be attributed to another medical condition.

Copyright © 2005 by Elsevier Inc.
BNP to differentiate etiology of acute dyspnea in ER setting

Diagnosis of Heart Failure

<table>
<thead>
<tr>
<th>Etiology of dyspnea</th>
<th>BNP (pg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHF (n = 134)</td>
<td>1800±455</td>
</tr>
<tr>
<td>Baseline left ventricular dysfunction No CHF (n = 22)</td>
<td>100±56</td>
</tr>
<tr>
<td>Pulmonary (n = 85)</td>
<td>20±23</td>
</tr>
<tr>
<td>Other cardiac (n = 75)</td>
<td>15±5</td>
</tr>
<tr>
<td>Other nonpulmonary (n = 27)</td>
<td>10±2</td>
</tr>
</tbody>
</table>
Survival by BNP Quartile

![Graph showing survival probability over time since randomization by BNP quartile. The graph includes survival curves for Q1, Q2, Q3, and Q4 BNP levels.](image)

- **BNP (pg/ml) and Mortality (%)**:
 - Q1: < 41, Mortality: 9.7%
 - Q2: 41–< 97, Mortality: 14.3%
 - Q3: 97–< 238, Mortality: 20.7%
 - Q4: ≥ 238, Mortality: 32.4%

Copyright © 2005 by Elsevier Inc.
Survival by BNP Quartile

ACC IIa - Measurement of B-type natriuretic peptide (BNP)* can be useful in the evaluation of patients presenting in the urgent care setting in whom the clinical diagnosis of HF is uncertain. (Level of Evidence: A)

ACC IIb - The value of serial measurements of BNP to guide therapy for patients with HF is not well established. (Level of Evidence: C)
Treatment of Heart Failure

- Chronic Stable
 - Lifestyle
 - Risk Factor Modification
 - Pharmacological
 - Device/Nonpharmacologic

- Acute Decompensation
 - Pharmacological
 - Device/Nonpharmacologic
Pharmacological Treatment of Heart Failure (Systolic Dysfunction)
A Brief History of Digoxin

- 1785 - William Withering publishes *An Account of the Foxglove and some of its Medical Uses* which recounts an anecdote of treating a patient with Dropsy
- 1997 – DIG trial shows reduction in hospitalization but no mortality benefit of digoxin for heart failure
- Post Hoc DIG Analyses
 - 2002 – digoxin harmful to women (4% increase in mortality)
 - 2003 – target Digoxin level should be 0.5-0.8 ng/mL
 - 2006 – survival benefit with Digoxin Level 0.5-0.8
Adjusted outcomes and hazard ratios by SDCs

<table>
<thead>
<tr>
<th>Adjusted outcomes*</th>
<th>Placebo</th>
<th>HR** (95% CI) by SDC 0.5-0.8 ng/mL</th>
<th>HR (95% CI) by SDC 0.9-1.1 ng/mL</th>
<th>HR (95% CI) by SDC 1.2 ng/mL or greater</th>
</tr>
</thead>
<tbody>
<tr>
<td>All-cause mortality</td>
<td>Referent</td>
<td>0.80 (0.68-0.94)</td>
<td>0.89 (0.74-1.08)</td>
<td>1.16 (0.96-1.39)</td>
</tr>
<tr>
<td>Cardiovascular mortality</td>
<td>Referent</td>
<td>0.86 (0.72-1.02)</td>
<td>0.93 (0.76-1.14)</td>
<td>1.21 (0.99-1.47)</td>
</tr>
<tr>
<td>Worsening heart failure</td>
<td>Referent</td>
<td>0.66 (0.49-0.89)</td>
<td>0.86 (0.63-1.17)</td>
<td>0.95 (0.69-1.31)</td>
</tr>
<tr>
<td>All-cause hospitalization</td>
<td>Referent</td>
<td>0.83 (0.74-0.93)</td>
<td>1.02 (0.89-1.18)</td>
<td>0.90 (0.77-1.04)</td>
</tr>
<tr>
<td>Hospitalization for worsening heart failure</td>
<td>Referent</td>
<td>0.56 (0.46-0.67)</td>
<td>0.74 (0.60-0.92)</td>
<td>0.65 (0.52-0.82)</td>
</tr>
</tbody>
</table>

*Adjusted for age; race; body mass index; LVEF; NYHA class; cardiothoracic ratio; number of HF signs and symptoms; systolic BP; heart rate; estimated glomerular filtration rate; duration of HF; primary cause of HF; history of MI, angina, diabetes, and hypertension; prior use of digoxin; and use of potassium-sparing diuretics, all other diuretics, ACE inhibitors, nitrates, hydralazine, and other vasodilators.

HR-hazard ratio

Rathore SS et al. JAMA 2003 Feb 19; 289(7):871-878
Post hoc DIG analysis

<table>
<thead>
<tr>
<th>Condition</th>
<th>Digoxin</th>
<th>Placebo</th>
<th>**</th>
<th>ng/mL</th>
<th>>1.0 ng/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td>33%</td>
<td>29%</td>
<td>(p<0.01)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Cause Hospitalization</td>
<td>67%</td>
<td>64%</td>
<td>(p≈0.05)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HF Hospitalization</td>
<td>33%</td>
<td>23%</td>
<td>(p<0.01)</td>
<td>29%</td>
<td>(p<0.01)</td>
</tr>
</tbody>
</table>

No interaction between EF>40% or gender

Post hoc DIG analysis

<table>
<thead>
<tr>
<th></th>
<th>1687 Digoxin</th>
<th>placebo</th>
<th>0.5-0.9 ng/mL</th>
<th>>=1.0 ng/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td>33%</td>
<td></td>
<td>29% (p<0.01)</td>
<td></td>
</tr>
<tr>
<td>All Cause</td>
<td>67%</td>
<td></td>
<td>64% (p≈0.05)</td>
<td></td>
</tr>
<tr>
<td>Hospitalization</td>
<td>33%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No interaction between EF>40% or gender.

ACC III - Digoxin should not be used in patients with low EF, sinus rhythm, and no history of HF symptoms, because in this population, the risk of harm is not balanced by any known benefit. (Level of Evidence: C)

Diuretics in Heart Failure

- Loop diuretics used for volume control and relief of symptoms
- Thiazide diuretics may be added in conjunction
- No trial data!

ACC I - Diuretics and salt restriction are indicated in patients with current or prior symptoms of HF and reduced LVEF who have evidence of fluid retention (see Table 4). (Level of Evidence: C)
Diuretic Action Sites
Vasodilators in Heart Failure

- VHEFT 1 showed 27% relative reduction in mortality with vasodilators
 - Digoxin + diuretics
 - Placebo vs. isosorbide + hydralazine
- VHEFT 2 showed 7% absolute (25% vs 18%) mortality benefit of ACE over isordil/hydralazine
 - Enalapril 10mg bid vs isosorbide dinitrate 40mg qid + hydralazine 75mg qid

ACE inhibitors in Heart Failure

- 1991 SOLVD – enalapril 10mg bid vs placebo for patients with chronic EF <=35%
- 2569 patients, average 41 month followup

<table>
<thead>
<tr>
<th></th>
<th>Placebo</th>
<th>Enalapril</th>
</tr>
</thead>
<tbody>
<tr>
<td>Death</td>
<td>39.7%</td>
<td>35.2% (p=0.004)</td>
</tr>
<tr>
<td>Hospitalization</td>
<td>74%</td>
<td>69% (p=0.006)</td>
</tr>
</tbody>
</table>

ACE inhibitors in Heart Failure

• 1991 SOLVD – enalapril 10mg bid vs placebo for patients with EF <=35%
• 2569 patients, average 41 month followup

<table>
<thead>
<tr>
<th></th>
<th>Placebo</th>
<th>Enalapril</th>
</tr>
</thead>
<tbody>
<tr>
<td>Death</td>
<td>39.7%</td>
<td>35.2% (p=0.004)</td>
</tr>
<tr>
<td>Hospitalization</td>
<td>74%</td>
<td>69% (p=0.006)</td>
</tr>
</tbody>
</table>

ACC I - Angiotensin converting enzyme inhibitors should be used in patients with a reduced EF and no symptoms of HF, even if they have not experienced MI. (Level of Evidence: A)
β-Blockers in Heart Failure

- Improves survival in chronic heart failure

 A. 1999 MERIT-HF (Toprol XL)
 - EF <=40%, NYHA 2-4

 B. 1999 CIBIS II (bisoprolol)
 - EF <=35%, NYHA 3-4

 C. 2001 COPERNICUS (Coreg)
 - EF <25%
β-Blockers in Heart Failure

- Improves survival in chronic heart failure

 A. 1999 MERIT-HF (Toprol XL)
 - EF <=40%, NYHA 2-4

 B. 1999 CIBIS II (bisoprolol)
 - EF <=35%, NYHA 3-4

 C. 2001 COPERNICUS (Coreg)
 - EF <25%

ACC I - Beta-blockers and ACEIs should be used in all patients with a recent or remote history of MI regardless of EF or presence of HF (see Table 3). (Level of Evidence: A)

Beta-blockers are indicated in all patients without a history of MI who have a reduced LVEF with no HF symptoms (see Table 3 and text). (Level of Evidence: C)
Spironolactone in Heart Failure

- 1999 RALES trial
 - 1663 patients with NYHA 3-4 and EF <35%
 - Excluded creatinine >2.5 mg/dL or K+ >5 mmol/L
 - Mean 24 month followup
 - 25mg qd spironolactone vs placebo
 - No β-Blocker use
 - All cause mortality
 - 46% placebo
 - 35% spironolactone (p<0.001)

Spironolactone in Heart Failure

ACC I - Addition of an aldosterone antagonist is reasonable in selected patients with moderately severe to severe symptoms of HF and reduced LVEF who can be carefully monitored for preserved renal function and normal potassium concentration. Creatinine should be less than or equal to 2.5 mg/dL in men or less than or equal to 2.0 mg/dL in women and potassium should be less than 5.0 mEq/L. Under circumstances where monitoring for hyperkalemia or renal dysfunction is not anticipated to be feasible, the risks may outweigh the benefits of aldosterone antagonists. (Level of Evidence: B)

Mean 24 month follow-up:

- 25mg qd spironolactone vs placebo
 - No β-Blocker use
 - All cause mortality
 - 46% placebo
 - 35% spironolactone (p<0.001)

Angiotensin Receptor Blockers

• 2001 Val-HeFT
 • 5010 patients with NYHA class 2-4, EF<40%
 • 2 year followup
 • Valsartan titrated to 160mg bid vs placebo
 • On top of ACE, β-blockers, diuretics, digoxin
 • No difference in all cause mortality (19.7% vs 19.4%)
 • Combined Death/CHF hospitalization favored valsartan (28.8% vs 32.1%, p=0.009)

• 2000 ELITE-2
 • No difference between captopril and losartan

Angiotensin Receptor Blockers

- **2001 Val-HeFT**
 - 5010 patients with NYHA class 2
effort limitation
 - 2 year followup
 - Valsartan titrated to 160mg bid vs placebo
 - On top of ACE, β-blockers, diuretics, digoxin
 - No difference in all cause mortality (19.7% vs 19.4%)
 - Combined Death/CHF hospitalization favored valsartan (28.8% vs 32.1%, p=0.009)

- **2000 ELITE-2**
 - No difference between captopril and losartan

ACC IIa - Angiotensin II receptor blockers are reasonable to use as alternatives to ACEIs as first-line therapy for patients with mild to moderate HF and reduced LVEF, especially for patients already taking ARBs for other indications. (Level of Evidence: A)

ARB’s Revisited

• 2003 CHARM program
• CHARM-Added
 • 2548 patients, median followup 41 months
 • Candesartan 32mg daily added to ACE and other contemporary therapy
 • Reduction in death (23.7% v 27.3%, p=0.021)
 • Reduction in CHF hospitalization (24.2% v 28%, p=0.018)
• CHARM-Alternative
 • Patients intolerant of ACE benefited from ARB over placebo

ARB’s Revisited

- 2003 CHARM program
- CHARM-Added
 - 2548 patients, median followup 41 months
 - Candesartan 32mg daily added to ACE and other contemporary therapy
 - Reduction in death (23.7% v 27.3%, p=0.021)
 - Reduction in CHF hospitalization (24.2% v 28%, p=0.018)
- CHARM-Alternative
 - Patients intolerant of ACE benefited from ARB over placebo

ACC IIb - The addition of an ARB may be considered in persistently symptomatic patients with reduced LVEF who are already being treated with conventional therapy. (Level of Evidence: B)

Device Therapy in Heart Failure

Device Therapy in Chronic Systolic Heart Failure
ICD for primary prevention has mortality benefit for ischemic cardiomyopathy

- 2002 MADIT II
- Post MI
- LVEF <30%
- Conventional treatment vs. ICD
ICD’s beneficial in primary prevention for patients with Low EF regardless of etiology

• 2004 SCD-HEFT
• 2521 patients with NYHA 2-3, LVEF<35%
• ICD v amiodarone v placebo
• All cause mortality
 • 3 years: 17.1% v 24% v 22.3%
 • 5 years: 28.9% v 34.1% v 35.8%

ICD’s beneficial in primary prevention for patients with Low EF regardless of etiology

- 2004 SCD-HEFT
- 2521 patients with NYHA 2-3, LVEF<35%
- ICD v amiodarone v placebo
- All cause mortality
 - 3 years: 17.1% v 24% v 22.3%
 - 5 years: 28.9% v 34.1% v 35.8%

ACC IIa - Placement of an implantable cardioverter-defibrillator is reasonable in patients with LVEF of 30% to 35% of any origin with NYHA functional class II or III symptoms who are taking chronic optimal medical therapy and who have reasonable expectation of survival with good functional status of more than 1 year. (Level of Evidence: B)
Cardiac Resynchronization improves combined HF worsening/Death in patients with low EF and wide QRS

- 2002 MIRACLE
- 453 patients
- EF <35%
- QRS >130ms

- Cardiac Resynchronization vs placebo
- No mortality benefit demonstrated
Cardiac Resynchronization improves combined HF worsening/Death in patients with low EF and wide QRS

- 2002 MIRACLE
- 453 patients
- EF <35%
- QRS >130ms

- Cardiac Resynchronization vs placebo
- No mortality benefit demonstrated

ACC I - Patients with LVEF less than or equal to 35%, sinus rhythm, and NYHA functional class III or ambulatory class IV symptoms despite recommended, optimal medical therapy and who have cardiac dyssynchrony, which is currently defined as a QRS duration greater than 0.12 ms, should receive cardiac resynchronization therapy unless contraindicated. (Level of Evidence: A)
Pharmacological Treatment of Acute Decompensated Heart Failure
Pharmacological Treatment of Acute Decompensated Heart Failure

<table>
<thead>
<tr>
<th>TABLE 24–4</th>
<th>Pharmacological Therapy for Acute, Decompensated Heart Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment Modality</td>
<td>Specific Examples</td>
</tr>
<tr>
<td>Intravenous diuretics</td>
<td>Furosemide, bumetamide, torsemide</td>
</tr>
<tr>
<td>Intravenous positive inotropic agents</td>
<td>Dobutamine, milrinone, enoximone</td>
</tr>
<tr>
<td>Intravenous vasodilators</td>
<td>Nitroprusside, nitroglycerine, nesiritide</td>
</tr>
<tr>
<td>Blood pressure, renal perfusion support</td>
<td>Intravenous dopamine, intravenous vasopressin</td>
</tr>
</tbody>
</table>

Copyright © 2005 by Elsevier Inc.
Nonpharmacological/Device Therapy for Acute Decompensated Heart Failure

<table>
<thead>
<tr>
<th>Treatment Modality</th>
<th>Specific Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygenation</td>
<td>Supplemental oxygen, mechanical ventilation</td>
</tr>
<tr>
<td>Balloon counterpulsation</td>
<td>Intraaortic balloon pump</td>
</tr>
<tr>
<td>VAD</td>
<td>Pulsatile-flow LVAD</td>
</tr>
<tr>
<td>Pacing</td>
<td>AV sequential pacemaker; biventricular pacing</td>
</tr>
<tr>
<td>Urgent cardiac catheterization</td>
<td>PTCA, mitral valvuloplasty, pericardiocentesis</td>
</tr>
<tr>
<td>Urgent cardiac surgery</td>
<td>CABG, AVR, MV repair or replacement, transplantation</td>
</tr>
</tbody>
</table>

AV = atrioventricular; AVR = aortic valve replacement; CABG = coronary artery bypass grafting; LVAD = left ventricular assist device; MV = mitral valve; PTCA = percutaneous transluminal coronary angioplasty; VAD = ventricular assist device.

Copyright © 2005 by Elsevier Inc.
Effect of Natrecor on PCWP
Thoratec Heartmate

2004 REMATCH

HF patients requiring inotropes
HF patients requiring inotropes

ACC IIa - Consideration of an LV assist device as permanent or “destination” therapy is reasonable in highly selected patients with refractory end-stage HF and an estimated 1-year mortality over 50% with medical therapy. (Level of Evidence: B)
New Directions in Heart Failure

- Pathophysiologic implication of neurohormonal treatment
- New medications
- New devices
- Recognition of Comorbidities
Renin-Angiotensin system

- Adrenergic
 - Increased HR and contractility
 - Increased MVO$_2$
 - Myocyte damage
- Renin-angiotensin
 - Vasoconstriction ↓
 - Fluid retention
 - Increased wall stress
 - Hypertrophy
- Direct cardiotoxicity
 - Decreased contractility

Copyright © 2005 by Elsevier Inc.
Preventing Heart Failure

- 2003 HOPE trial
- >=55 years old with
 - CAD, CVA or PAD or
 - Diabetes + at least 1 risk factor
 - HTN, HLP, smoking, microalbuminuria
 - Excluded EF <40%, uncontrolled HTN, CVA or MI in past 4 weeks
- Ramipril 10mg daily vs placebo
- 9541 patients
- 4.5 year followup

HOPE results

• New onset heart failure
 • 9.0% with ramipril vs 11.5% placebo (p<0.0001)
• Reduced risk of HF whether or not there was an interim myocardial infarction
• Reduced risk for patients with SBP above median (139mmHg) and below median
• Conclusion – Ramipril reduces development of HF in at-risk patients

ACC IIa - Angiotensin converting enzyme inhibitors can be useful to prevent HF in patients at high risk for developing HF who have a history of atherosclerotic vascular disease, diabetes mellitus, or hypertension with associated cardiovascular risk factors. (Level of Evidence: A)
Neurohumoral vasoconstriction leading to renal sodium and water retention
Normal Parasympathetic tone

Afferents
- Arterial chemoreceptors
- Arterial baroreceptors
- Cardiopulmonary baroreceptors
- Muscle metaboreceptors

NORMAL
- CNS

Efferents
- Heart rate
- Parasympathetic
- NE
- Na⁺ reabsorption
- Renin
- Renal vascular resistance
- Peripheral vascular resistance

Copyright © 2005 by Elsevier Inc.
Abnormal Sympathetic Tone

Diagram illustrating the afferents and efferents involved in heart failure, showing the role of the sympathetic and parasympathetic nervous systems. Key points include:

- Arterial chemoreceptors
- Arterial baroreceptors
- Cardiopulmonary baroreceptors
- Muscle metaboreceptors
- Heart rate regulation
- Adverse cardiac effects
- Sodium reabsorption
- Renin release
- Renal vascular resistance
- Peripheral vascular resistance

Copyright © 2005 by Elsevier Inc.
New Directions in Chronic Systolic Heart Failure
EPHESUS

- 6632 patients
- Acute Myocardial Infarction
- EF <40% and
 - Heart Failure (Rales) or
 - Diabetes
- Eplerenone 25mg daily vs placebo

![Graph showing rate of cardiac death comparison between placebo and Eplerenone.](https://via.placeholder.com/150)

EPHESUS

Rate of Cardiac Death

- 6632 patients
- Acute Myocardial Infarction
- EF <40% and
 - Heart Failure (Rales) or
 - Diabetes
- Eplerenone 25mg daily vs placebo

ACC I - Long-term aldosterone blockade should be prescribed for post-STEMI patients without significant renal dysfunction (creatinine should be less than or equal to 2.5 mg/dL in men and less than or equal to 2.0 mg/dL in women) or hyperkalemia (potassium should be less than or equal to 5.0 mEq/L) who are already receiving therapeutic doses of an ACE inhibitor, have an LVEF of less than or equal to 0.40, and have either symptomatic heart failure or diabetes. (Level of Evidence: A)

Isosorbide/Hydralazine is beneficial in African Americans

- 2004 A-HeFT
- 1050 self-classified African-Americans
- NYHA class 3-4
 - LVEF<=35% or
 - LVEF <=40% with LV dilatation
- BiDil (20mg isordil + 37.5mg hydralazine) tid vs placebo
- On top of standard tx including ACE, β-blockers, diuretics

A-HeFT results

- Mean 10 month followup
- BiDil improved mortality and 1st HF hospitalization

<table>
<thead>
<tr>
<th></th>
<th>placebo</th>
<th>BiDil</th>
</tr>
</thead>
<tbody>
<tr>
<td>All-cause mortality</td>
<td>10.2%</td>
<td>6.2% (p=0.01)</td>
</tr>
<tr>
<td>1st HF hospitalization</td>
<td>24.4%</td>
<td>16.4% (p=0.001)</td>
</tr>
</tbody>
</table>

A-HeFT results

- Mean 10 month followup
- BiDil improved mortality and 1st HF hospitalization

ACC IIa - The addition of isosorbide dinitrate and hydralazine to a standard medical regimen for HF, including ACEIs and beta-blockers, is reasonable and can be effective in blacks with NYHA functional class III or IV HF. Others may benefit similarly, but this has not yet been tested. (Level of Evidence: A)

The addition of a combination of hydralazine and a nitrate is reasonable for patients with reduced LVEF who are already taking an ACEI and beta-blocker for symptomatic HF and who have persistent symptoms. (Level of Evidence: A)

New Directions in Acute Decompensated Heart Failure
Arginine Vasopressin Receptor Antagonists

• New class of medications
• Blocks effect of antidiuretic hormone (ADH)
• Facilitates Aquareesis (net loss of water without electrolytes)
• Used in conjunction with other diuretics
• Receptors
 • V(1A) (vascular and myocardial effects)
 • V(2) receptors (renal effects)
• Conivaptan (IV) is a V(1A) + V(2) nonselective antagonist, approved for use in hyponatremia (SIADH)
• Tolvaptan (oral) is a V(2) selective antagonist
In-hospital outcomes of oral tolvaptan and placebo in ACTIV in CHF

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Tolvaptan 30 mg/day (n=78)</th>
<th>Tolvaptan 60 mg/day (n=84)</th>
<th>Tolvaptan 90 mg/day (n=77)</th>
<th>Placebo (n=80)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight loss vs baseline, hospital day 1, median kg (p vs placebo)</td>
<td>1.80 (0.002)</td>
<td>2.10 (0.002)</td>
<td>2.05 (0.009)</td>
<td>0.60</td>
</tr>
<tr>
<td>Weight loss vs baseline, at discharge, median kg (p vs placebo)</td>
<td>3.30 (0.006)</td>
<td>2.80 (0.002)</td>
<td>3.20 (0.06)</td>
<td>1.90</td>
</tr>
<tr>
<td>Urine volume, hospital day 1, mean mL (p vs placebo)</td>
<td>4056.2 (0.02) (<0.001)</td>
<td>4175.2 (0.002) (<0.001)</td>
<td>4127.3 (0.001) (<0.001)</td>
<td>2296.5</td>
</tr>
</tbody>
</table>

Adenosine A1 receptor antagonists

- Elevated levels of plasma adenosine in heart failure
- Adenosine lowers renal cortical blood flow
- Small phase 2 trial completed
- Adenosine A1 receptor blockade can cause natriuresis and diuresis without impact on K+ excretion or GFR

Ultrafiltration

- Peripheral or central venous access options
- Catheter options include peripheral IVs, midlines or central
- Fluid removal adjustable from 10 to 500 ml/hour in 10 ml/hour increments
- Blood flow settable from 10 to 40 ml/min in 5 ml/min increments
- Total extracorporeal blood volume of 33 ml

http://www.chfsolutions.com/
Primary and secondary end points, ultrafiltration vs standard diuresis in UNLOAD

<table>
<thead>
<tr>
<th>End points</th>
<th>Ultrafiltration</th>
<th>Diuresis</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>48 hours</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Weight loss, primary end point</td>
<td>5.0, n=83</td>
<td>3.1, n=84</td>
<td>0.001</td>
</tr>
<tr>
<td>(mean kg)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Dyspnea score, primary end point</td>
<td>6.4, n=80</td>
<td>6.1, n=83</td>
<td>0.35</td>
</tr>
<tr>
<td>(mean)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Net fluid loss (mean L)</td>
<td>4.6</td>
<td>3.3</td>
<td>0.001</td>
</tr>
<tr>
<td>• K<3.5 mEq/L (%)</td>
<td>1</td>
<td>12</td>
<td>0.018</td>
</tr>
<tr>
<td>• Need for vasoactive drugs (%)</td>
<td>3</td>
<td>13</td>
<td>0.015</td>
</tr>
</tbody>
</table>

K=potassium
ED=emergency department
Primary and secondary end points, ultrafiltration vs standard diuresis in **UNLOAD**

<table>
<thead>
<tr>
<th>End points</th>
<th>Ultrafiltration</th>
<th>Diuresis</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 days</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Rehospitalization (%)</td>
<td>18</td>
<td>32</td>
<td>0.022</td>
</tr>
<tr>
<td>• Rehospitalization days (mean)</td>
<td>1.4</td>
<td>3.8</td>
<td>0.022</td>
</tr>
<tr>
<td>• Unscheduled office/ED visits (%)</td>
<td>21</td>
<td>44</td>
<td>0.009</td>
</tr>
</tbody>
</table>

*K=potassium
ED=emergency department*
Calcium sensitization
Levosimenden

- Novel agent which improves myocardial contractility without increasing intracellular calcium or c-AMP
- Improves myocardial sensitivity to calcium
- Vasodilator action by opening ATP sensitive K+ channels
Early Levosimendan Trials

• Advanced decompensated heart failure (IV)
 • 2003 LIDO (vs dobutamine)\(^1\)
 • Improved PCWP and cardiac index
 • Improved 1 month (7.8% v 17%) and 6 month (26% v 38%) mortality
 • Improves BNP and inflammatory cytokines vs dobutamine\(^2\)
 • Improves PCWP and Cardiac Index in sepsis-induced cardiac dysfunction vs dobutamine\(^3\)

• Class 3-4 Heart Failure (oral)
 • Improves inotropic parameters and increases heart rate\(^4\)

Later Levosimenden Trials

- **2005 REVIVE-2**
 - Acute decompensated HF (EF<=35%), vs placebo; 600 patients
 - “Clinical Improvement” better at 24h and 5d with levosimenden
 - 90 day mortality rate favored placebo (11% v 15%, p=NS)

- **2005 SURVIVE**
 - Acute decompensated HF (EF<=30%), vs dobutamine; 1327 patients
 - No significant survival advantage up to 6 months

- **2006 PERSIST (phase 2), Orion company sponsored**
 - Severe Heart failure patients (outpatient, oral)
 - No benefit vs placebo
 - No plans for phase 3 trial

- Subsequent trials have identified higher rates of atrial fibrillation, ventricular tachycardia, and hypotension with levosimenden

Endothelin Antagonists in Acute Decompensated Heart Failure

• 2005 VERITAS
 • Tezosentan – IV dual endothelin receptor antagonist v placebo on top of usual care
 • Largest study in acute decompensated HF
 – 1400 patients
 • No difference in dyspnea at 24h
 • No difference in worsening heart failure or mortality at 7 days (26% v 26%)
 • No mortality benefit at 6 months

New Evidence in Device Therapy for Heart Failure with Systolic Dysfunction
Cardiac Resynchronization improves mortality with EF<35% and wide QRS

- 2005 CARE-HF
- 813 patients with NYHA 3-4, LVEF \(\leq 35\% \), QRS\(\geq 120\)ms
- 29.4 month followup
- Cardiac resynchronization (Bi-V pacing) vs standard medical therapy
- All cause mortality 20% v 30% (\(p<0.002 \))

Cardiac Resynchronization for NYHA class 2 patients?

- 50 patients Class 2 v 50 patients Class 3-4
- NYHA class 2, LVEF \leq 35\%
- QRS > 120 ms
- Class 2 patients
 - EF improved from 25% to 33%
 - Only 8% had worsening HF symptoms
 - Results comparable to Class 3-4 patients

Predicting Responders to CRT

- Currently a QRS width of >120ms is used as a marker of LV dyssynchrony
- Echocardiographic parameters are useful to determine dyssynchrony
 - Paradoxical septal motion
 - Tissue doppler imaging
 - Speckle
 - Strain
http://www.nature.com/ncpcardio/journal/v2/n10/images/ncpcardio0323-F1.gif
Risk Stratification for ICDs

Microvolt T Wave Alternans

- Ischemic Cardiomyopathy, EF <=35%
- Observational Cohort Study

http://www.nature.com/ncpcardio/journal/v2/n10/images/ncpcardio0323-F1.gif
Comorbidities in Heart Failure
Anemia is associated with increased mortality in Heart Failure
Treating anemia improves function in heart failure

• Treatment with erythropoietin 15,000-30,000 IU/week over 3 months improved anemia and function in small study of 26 patients

• Patients with LVEF<=40%, NYHA 3-4, Hgb 10-11.5g% treated with epogen and IV iron over 8 months have improved EF, improved function, decreased need for diuretics, and decreased hospitalizations (n=32)

Treating anemia improves function in heart failure

- Treatment with erythropoietin 15,000-30,000 IU/week over 3 months improved anemia and function in small study of 26 patients

- Patients with LVEF<=40%, NYHA 3-4, Hgb 10-11.5g% treated with epogen and IV iron over 8 months have improved EF, improved function, decreased need for diuretics, and decreased hospitalizations (n=32)

Cardiorenal Syndrome

• Concomitant Cardiac and Renal dysfunction leading to diuretic resistance and volume overload

• No formal standard definition
 • Rise in creatinine of 0.3 mg/dL

• 1/3-1/2 of heart failure patients develop renal insufficiency (GFR <60mL/min/1.73m2) in clinical trials

• Worse renal function = worse prognosis

Risk Factors for Worsening Renal Function in the SOLVD trials

- Old age
- Low EF
- Baseline Renal dysfunction
- Low systolic blood pressure
- Diabetes Mellitus
- Hypertension
- Use of antiplatelet tx, diuretics, or β-Blockers

Treatment of Cardiorenal Syndrome

- **ACE inhibitors**
 - Start when patient is not dehydrated, cautious use with creatinine >2.0

- **Diuretics**
 - May lead to higher mortality, pump failure
 - Diuretic resistance is a marker for advanced disease
New Horizons in Surgical Treatment for Heart Failure
Stem Cell Therapy

- EF <35%, scheduled primary off-pump CABG
- Epicardial autologous stem cell transplantation (CD34+); injection sites determined by pre-operative echocardiogram, catheterization, and nuclear stress imaging.
- 20 patients randomized (placebo v stem cell)
- Average baseline EF 30%, median 1 bypass graft
- 6 month FU
 - Mean EF improved in stem cell group (46% v 37%, p<0.001)

Update on Anticoagulation Trials
Anticoagulation Does Not Reduce Thromboembolic Risk in HF

• **2004 WATCH**¹
 - 1587 patients with HF and LVEF <35%; 23 months FU
 - ASA (162mg/d) v clopidogrel v Warfarin (INR 2.5-3)
 - Similar rates of death, MI and stroke

• **2004 WASH**²
 - 279 patients with HF; 27 months FU
 - Placebo v ASA v Warfarin
 - No differences in primary endpoint of death, nonfatal MI, or nonfatal stroke

• **2006 HELAS**³
 - Ischemic/nonischemic cardiomyopathy
 - 115 patients, ASA v Warfarin; 2.5 years FU
 - No differences in the primary composite end point of death, MI, hospitalization, HF exacerbation, or hemorrhage

Anticoagulation Does Not Reduce Thromboembolic Risk in HF

- 2004 WATCH
 - 1587 patients with HF and LVEF <35%
 - ASA (162mg/d) v clopidogrel v Warfarin (INR 2.5-3)
 - Similar rates of death, MI and stroke

- 2004 WASH
 - 279 patients with HF; 27 months FU
 - Placebo v ASA v Warfarin
 - No differences in primary endpoint of death, nonfatal MI, or nonfatal stroke

- 2006 HELAS
 - Ischemic/nonischemic cardiomyopathy
 - 115 patients, ASA v Warfarin; 2.5 years FU
 - No differences in the primary composite end point of death, MI, hospitalization, HF exacerbation, or hemorrhage

ACC IIb - The usefulness of anticoagulation is not well established in patients with HF who do not have atrial fibrillation or a previous thromboembolic event. (Level of Evidence: B)

Update on Anticoagulation Trials

Diastolic Heart Failure

A Few Words on Diastolic Heart Failure...
Development of Diastolic Heart Failure

- Fibrosis
- Cellular disarray
- Hypertrophy
- Asynchrony
- Abnormal loading
- Ischemia
- Abnormal Ca^{2+} flux

↑Passive chamber stiffness

↓Relaxation

↑Diastolic pressure

Copyright © 2005 by Elsevier Inc.
Diagnostic Criteria for Diastolic Heart Failure

TABLE 22–4 Diagnostic Criteria for Diastolic Heart Failure

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Possible Diastolic Heart Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definitive evidence of HF</td>
<td>Signs and symptoms of HF, supporting laboratory tests, * and response to diuretics</td>
</tr>
<tr>
<td>Objective evidence of normal LV systolic function</td>
<td>LVEF ≥ 50% but not at the time of HF event</td>
</tr>
<tr>
<td>Objective evidence of LV diastolic dysfunction</td>
<td>No conclusive information</td>
</tr>
</tbody>
</table>

* Chest radiograph, B-type natriuretic peptide level.
HF = heart failure; LV = left ventricular; LVEF = LV ejection fraction.
Adapted from Vasan RS, Levy D: Defining diastolic heart failure: A call for standardization.
Copyright © 2000-2008 David Stultz, MD.
Diagnostic Criteria for Diastolic Heart Failure

<table>
<thead>
<tr>
<th>Probable Diastolic Heart Failure</th>
<th>Definite Diastolic Heart Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signs and symptoms of HF, supporting laboratory tests,* and response to diuretics</td>
<td>Signs and symptoms of HF, supporting laboratory tests,* and response to diuretics</td>
</tr>
<tr>
<td>LVEF ≥ 50% within 72 hr of HF event</td>
<td>LVEF ≥ 50% within 72 hr of HF event</td>
</tr>
<tr>
<td>No conclusive information</td>
<td>Abnormal LV relaxation, filling and/or distensibility at cardiac catheterization</td>
</tr>
</tbody>
</table>

2005 by Elsevier Inc.
<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Class</th>
<th>Level of Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physicians should control systolic and diastolic hypertension, in accordance with published guidelines.</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>Physicians should control ventricular rate in patients with atrial fibrillation.</td>
<td>I</td>
<td>C</td>
</tr>
<tr>
<td>Physicians should use diuretics to control pulmonary congestion and peripheral edema.</td>
<td>I</td>
<td>C</td>
</tr>
<tr>
<td>Coronary revascularization is reasonable in patients with coronary artery disease in whom symptomatic or demonstrable myocardial ischemia is judged to be having an adverse effect on cardiac function.</td>
<td>IIa</td>
<td>C</td>
</tr>
<tr>
<td>Restoration and maintenance of sinus rhythm in patients with atrial fibrillation might be useful to improve symptoms.</td>
<td>IIb</td>
<td>C</td>
</tr>
<tr>
<td>The use of beta-adrenergic blocking agents, angiotensin converting enzyme inhibitors, angiotensin II receptor blockers, or calcium antagonists in patients with controlled hypertension might be effective to minimize symptoms of heart failure.</td>
<td>IIb</td>
<td>C</td>
</tr>
<tr>
<td>The use of digitalis to minimize symptoms of heart failure is not well established.</td>
<td>IIb</td>
<td>C</td>
</tr>
</tbody>
</table>
CHARM-preserved trial

- 3025 patients, median followup 36 months
- Candesartan titrated to 32mg daily vs placebo

<table>
<thead>
<tr>
<th></th>
<th>placebo</th>
<th>candesartan</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV Death</td>
<td>11.3</td>
<td>11.2</td>
</tr>
<tr>
<td>CHF Hospitalization</td>
<td>18.3</td>
<td>15.9 (p=0.047)</td>
</tr>
</tbody>
</table>

Prognosis of Diastolic v Systolic Heart Failure

• Canadian 1 year study
 • 2802 patients with new HF and documented EF
 • Compared 1570 pts with EF<40% with 880 pts with EF>50%
 • Groups clinically not distinguishable at admission
 • 1 year mortality 22% (diastolic) v 25% (systolic)

• American 15 year study
 • 4596 patients discharged with HF
 • 2429 pts with EF <50%, 2167 pts with EF >=50%
 • At 5 years, mortality hazard ratio for diastolic HF was 0.96 (CI 0.92-1.00); better for <65 yrs age (0.87)

In Summary: The Old

- **Digoxin**
 - For relief of symptoms

- **Diuretics**
 - As needed for volume control and symptoms

- **ACE Inhibitors**
 - All patients with systolic dysfunction
 - To prevent HF in high risk population
 - ARB ok if ACE intolerance

- **β-Blockers**
 - For all patients with systolic dysfunction

- **Aldactone**
 - For class NYHA 3-4 patients
The Recent New

- Isordil/Hydralazine
 - African Americans, on top of other therapy
- ARB’s in addition to ACE
- ARB’s for diastolic heart failure
- ACE may prevent heart failure
- ICD for EF <35%
- BiVentricular pacing
 - EF<35%, QRS 120ms, NYHA 3-4
The New

- Ultrafiltration for decompensated heart failure
- LVAD as a destination therapy for refractory heart failure
- AVP receptor antagonists
- Adenosine A₁ antagonists
- Stem cell therapy
- Predicting risk of sudden cardiac death by microvolt t-wave alternans
- Recognition that diastolic and systolic heart failure have similar (bad) prognosis
References