Cardiac Cath Lab Anatomy \& Hemodynamics

David Stultz, MD
Cardiology Fellow, PGY 6

A
Copyright © 2005 by Elsevier Inc.

Heart - Basal Surface
Posterior View

Heart - Diaphragmatic Surface Posteroinferior View

Coronary Arteries and Cardiac Veins
Sternocostal Surface

Coronary Arteries and Cardiac Veins
Diaphragmatic Surface

© 2004 Elsevier Ltd - Cardiology 2E, edited by Crawford, DiMarco and Paulus. All rights reserved.

Left Coronary Artery

Arteriographic View 2

Right anterior oblique view

Left Coronary Artery

Arteriographic View 1

Left anterior oblique view

© 2004 Elsevier Ltd-Cardiology 2E, edited by Crawford, DiMarco and Paulus. All rights reserved.

Right Coronary Artery

Arteriographic View 1

Left anterior oblique view

Right Coronary Artery

Arteriographic View 2

Right anterior oblique view

Copyright © 2005 by Elsevier Inc.

Hemodynamic Calculations

- Cardiac Output
- Aortic Valve Area
- Mitral Valve Area
- Cardiac shunts

Copyright © 2005 by Elsevier Inc.

Calculation of Blood Flow

- $\mathrm{Qp}=\mathrm{O}_{2}$ consumption / PV O_{2} content $-\mathrm{PA} \mathrm{O} \mathrm{O}_{2}$ content
- Qs (Cardiac Output) $=\mathrm{O}_{2}$ consumption / SA O_{2} content - MV O_{2} content

O_{2} consumption

- Douglas bag most accurate
- Never used
- Estimated common (10\% error)
- $125 \mathrm{~mL} / \mathrm{m}^{2}$ ($110 \mathrm{~mL} / \mathrm{m}^{2}$ for elderly)
- BSA $\left(\mathrm{m}^{2}\right)=$ Sq Root (wt in kg * height in cm/3600)
- AV difference (Fick) (5\% error)
- Photodetector technique of expired air
- Cardiac ouput $=\mathrm{O}_{2}$ consumption/A-V O_{2} oxygen content difference
- Cardiac Output $=\mathrm{O}_{2}$ Consumption/Hgb x $1.36[\mathrm{x} 10] \times$ (Arterial O_{2} - Mixed Venous O_{2})

Valve Area

- AVA = Cardiac Output (mL/min) HR x SEP (s) x $44.3 \times$ sqrt (Mean Aortic grad)

Hakke equation
AVA = Cardiac Output (L/min) / sqrt (Mean or peak-peak aortic gradient)

- MVA = Cardiac Output (mL/min)

HR \times DFP (s) $\times 38.5 \times$ sqrt (Mean Mitral grad)

Copyright © 2005 by Elsevier Inc.
(C) 2003-2006, David S

