Introduction to Cardiac Catheterization
Focus on Left Heart Catheterization

David Stultz, MD
Cardiology Fellow, PGY-5
July 27, 2004
A Fellow’s Perspective

• ACC Revised Recommendations for Training in Adult Cardiovascular Medicine Core Cardiology Training II (COCATS II)
• Guidelines for cardiology fellowship
• Covers Consult training, echocardiography, nuclear cardiology, catheterization, etc.
• Establishes criteria for Level 1-3 training
Clinical Skill defined by COCATS II

- **Level 1**—Basic training required of all trainees to be competent consultant cardiologists.

- **Level 2**—Additional training in one or more specialized areas that enables the cardiologist to perform or interpret (or both) specific procedures at an intermediate skill level or engage in rendering cardiovascular care in specialized areas.

- **Level 3**—Advanced training in a specialized area that enables a cardiologist to perform, interpret, and train others to perform and interpret specific procedures at a high skill level.
Cardiac Catheterization

• Level 1
 – 100 diagnostic cases
 – 4 months of training

• Level 2
 – 300 diagnostic cases
 – 8 months of training

• Level 3 (Interventional)
 – 250 more cases
 – Total 20 months of training
The Wright State Fellowship
Cardiac Catheterization

- **VA**
 - 2 months each year
 - Approximately 40-50 cases/month

- **GSH**
 - Various opportunity in 1st year
 - 2 months dedicated in 2nd year
 - 2-4 months in 3rd year
Indications for Cardiac Catheterization

Known CAD with Stable Angina or Asymptomatic

- Class I
 1. CCS class III and IV angina on medical treatment. *(Level of Evidence: B)*
 2. High-risk criteria on noninvasive testing regardless of anginal severity (Table 5). *(Level of Evidence: A)*
 3. Patients who have been successfully resuscitated from sudden cardiac death or have sustained (>30 s) monomorphic ventricular tachycardia or nonsustained (<30 s) polymorphic tachycardia.
Indications for Cardiac Catheterization

Known CAD with Stable Angina or Asymptomatic

• Class IIa

1. CCS class III or IV angina, which improves to class I or II with medical therapy. *(Level of Evidence: C)*

2. Serial noninvasive testing using identical testing protocols, at the same level of medical therapy, showing progressively worsening abnormalities. *(Level of Evidence: C)*

3. Patients with angina and suspected coronary disease who, due to disability, illness, or physical challenge, cannot be adequately risk stratified by other means. *(Level of Evidence: C)*

4. CCS class I or II angina with intolerance to adequate medical therapy or with failure to respond, or patients who have recurrence of symptoms during adequate medical therapy as defined above. *(Level of Evidence: C)*

5. Individuals whose occupation involves the safety of others (e.g., pilots, bus drivers, etc.) who have abnormal but not high-risk stress test results, or multiple clinical features that suggest high risk. *(Level of Evidence: C)*

ACC 1999
Indications for Cardiac Catheterization

Known CAD with Stable Angina or Asymptomatic

Class Ib

1. CCS class I or II angina with demonstrable ischemia but no high-risk criteria on noninvasive testing. *(Level of Evidence: C)*

2. Asymptomatic man or postmenopausal woman with >2 major clinical risk factors and abnormal but not high-risk criteria on noninvasive testing (performed for indications stated in the ACC/AHA noninvasive testing guidelines) without known coronary heart disease. *(Level of Evidence: C)*

3. Asymptomatic patients with prior MI with normal resting left ventricular function and ischemia on noninvasive testing, but without high-risk criteria. *(Level of Evidence: C)*

4. Periodic evaluation after cardiac transplantation. *(Level of Evidence: C)*

5. Candidate for liver, lung or renal transplant >40 years old as part of evaluation for transplantation. *(Level of Evidence: C)*
Indications for Cardiac Catheterization

Known CAD with Stable Angina or Asymptomatic

Class III
1. Angina in patients who prefer to avoid revascularization even though it might be appropriate. (Level of Evidence: C)
2. Angina in patients who are not candidates for coronary revascularization or in whom revascularization is not likely to improve quality or duration of life. (Level of Evidence: C)
3. As a screening test for CAD in asymptomatic patients. (Level of Evidence: C)
4. After CABG or angioplasty when there is no evidence of ischemia on noninvasive testing, unless there is informed consent for research purposes. (Level of Evidence: C)
5. Coronary calcification on fluoroscopy, electron beam CT, or other screening tests without criteria listed above. (Level of Evidence: C)
Indications for Cardiac Catheterization

- **Class I**
 Nonspecific Chest Pain
 1. High-risk findings on noninvasive testing. *(Level of Evidence: B)*

- **Class IIa**
 1. None.

- **Class IIb**
 1. Patients with recurrent hospitalizations for chest pain who have abnormal (but not high-risk) or equivocal findings on noninvasive testing. *(Level of Evidence: B)*

- **Class III**
 1. All other patients with nonspecific chest pain. *(Level of Evidence: C)*

ACC 1999
Unstable Angina

- Symptoms of angina at rest (usually prolonged >20 min);
- New-onset (<2 months) exertional angina of at least CCS class III in severity;
- Recent (<2 months) acceleration of angina as reflected by an increase in severity of at least one CCS class to at least CCS class III.
Indications for Cardiac Catheterization

- **Class I** Unstable Angina
 1. High or intermediate risk for adverse outcome in patients with unstable angina refractory to initial adequate medical therapy, or recurrent symptoms after initial stabilization. Emergent catheterization is recommended. *(Level of Evidence: B)*
 2. High risk for adverse outcome in patients with unstable angina. Urgent catheterization is recommended. *(Level of Evidence: B)*
 3. High- or intermediate-risk unstable angina that stabilizes after initial treatment. *(Level of Evidence: A)*
 4. Initially low short-term-risk unstable angina that is subsequently high risk on noninvasive testing (Table 5). *(Level of Evidence: B)*
 5. Suspected Prinzmetal variant angina. *(Level of Evidence: C)*

ACC 1999
Indications for Cardiac Catheterization

- **Class IIa**
 1. None.

- **Class IIb**
 1. Low short-term–risk unstable angina, without high-risk criteria on noninvasive testing. *(Level of Evidence: C)*

1. **Class III**
 1. Recurrent chest discomfort suggestive of unstable angina, but without objective signs of ischemia and with a normal coronary angiogram during the past five years. *(Level of Evidence: C)*
 2. Unstable angina in patients who are not candidates for coronary revascularization or in patients for whom coronary revascularization will not improve the quality or duration of life. *(Level of Evidence: C)*
Indications for Cardiac Catheterization

Other Guidelines

• Patients With Post-revascularization Ischemia
• During the Initial Management of Acute MI (MI Suspected and ST-Segment Elevation or Bundle-Branch Block Present)
• Patient With Suspected MI (ST-Segment Elevation or Bundle-Branch Block Present) Who Has Not Undergone Primary PTCA
• Early Coronary Angiography in Acute MI (MI Suspected but No ST-Segment Elevation)
• Coronary Angiography During the Hospital-Management Phase (Patients With Q-wave and Non–Q-Wave Infarction)
• During the Risk-Stratification Phase (Patients With All Types of MI)
• Perioperative Evaluation Before (or After) Noncardiac Surgery
• Patients With Valvular Heart Disease
• Patients With Congenital Heart Disease
• Patients With Congestive Heart Failure
• Other Conditions

ACC 1999
High Risk Predictors on Noninvasive Assessment

- Severe resting left ventricular dysfunction (LVEF <35%)
- High-risk treadmill score (score <= -11)
- Severe exercise left ventricular dysfunction (exercise LVEF <35%)
- Stress-induced large perfusion defect (particularly if anterior)
- Stress-induced multiple moderate perfusion defects
- Large, fixed perfusion defect with LV dilatation or increased lung uptake (thallium 201)
- Stress-induced moderate perfusion defect with LV dilatation or increased lung uptake (thallium 201)
- Echocardiographic wall motion abnormality (involving >2 segments) developing at low dose of dobutamine (<=10 mg/kg per minute) or low heart rate (<120 beats/min)
- Stress echocardiographic evidence of extensive ischemia
Relative Contraindications

- Acute renal failure
- Chronic renal failure secondary to diabetes
- Active gastrointestinal bleeding
- Unexplained fever, which may be due to infection
- Untreated active infection
- Acute stroke
- Severe anemia
- Severe uncontrolled hypertension
- Severe symptomatic electrolyte imbalance
- Severe lack of cooperation by patient due to psychological or severe systemic illness
- Severe concomitant illness that drastically shortens life expectancy or increases risk of therapeutic interventions
- Refusal of patient to consider definitive therapy such as PTCA, CABG, or valve replacement
- Digitalis intoxication
- Documented anaphylactoid reaction to angiographic contrast media
- Severe peripheral vascular disease limiting vascular access
- Decompensated congestive heart failure or acute pulmonary edema
- Severe coagulopathy
- Aortic valve endocarditis
Left Heart Catheterization

- Setup
- Vascular Access
- Anatomy and Imaging
Setup

- Patient Consent
- Prep and Drape patient and access site in sterile fashion
- Manifold connected and lines primed
- EKG/BP/Pulse ox monitoring
The Cath Table
Vascular Access

• Femoral
• Radial
• Brachial
• Axillary

• NEVER use carotid or subclavian
Femoral Approach Anatomy

X = Skin insertion Site

Grossman
Femoral Approach
Fluoroscopy

Grossman
Femoral Artery Approach

Equipment

Grossman
Femoral Artery Approach
Modified Seldinger Technique
Femoral Approach
Finding a site

Skin entry site at inferior border of the femoral head

Grossman
Femoral Approach
Ideal Cannulation

Arterial access in common femoral artery.

Low stick in the profunda or superficial femoral artery has higher risk of pseudoaneurysm formation and AV fistuiae.

High stick above inguinal ligament allows retroperitoneal bleeding.
Sheaths
A Manifold

Typically 3 or 4 valve system that has

• Pressure transducer
• IV Contrast
• Saline Flush/Waste
• (Open port for intracoronary administration)

The knob of the Valve points to the direction that is SHUT OFF
Diagnostic Catheters

Left to Right:
• Amplatz Right
• Judkins Right
• Sones
• Judkins Left
• Amplatz Left
Ventricular Catheters

Grossman
Advancing and Engaging Catheters

Top = LCA with Judkins Left

Bottom = RCA with Judkins Right
Damping

Grossman
Ventriculography position

Midcavitary positioning in 30 degrees RAO

Grossman
Injection technique

Steady but rapid buildup with peak pressure at end to see reflux of contrast into the aorta.
Camera Position

Camera positions referenced to location of Image Intensifier

Grossman
Basic Anatomy
Basic Anatomy

Coronary Arteries and Cardiac Veins
Sternocostal Surface

- Sinuatrial (SA) nodal branch
- Atrial branch of right coronary artery
- Anterior cardiac veins of right ventricle
- Small cardiac vein
- Right marginal branch of right coronary artery
- Left coronary artery
- Circumflex branch of left coronary artery
- Great cardiac (anterior interventricular) vein
- Anterior interventricular branch (left anterior descending) of left coronary artery
- Interventricular septal branches
- Right coronary artery
Basic Anatomy
Left Coronary Artery - RAO

Crawford
LAD Stenosis - RAO
Left Coronary Artery - LAO

Left Coronary Artery
Arteriographic View 1

Left anterior oblique view
LCA – RAO Caudal

Topol
LCA – RAO Cranial
LCA – LAO Cranial
LCA – LAO Caudal (Spider)
RCA - LAO

Right Coronary Artery
Arteriographic View 1

Left anterior oblique view
Basic Anatomy
Right Coronary Artery - LAO

Crawford
Right Coronary Thrombus
RCA - RAO

Right Coronary Artery
Arteriographic View 2

Netter

Right anterior oblique view
RCA - LAO
RCA - RAO

© 2003-2006, David Stultz, MD

Topol
Basic Anatomy
Aortic Valve Cusps
Basic Anatomy
Aortic Valve opened

* Conus
RC
STJ
N
P
LV

Aorta
R
L
LC
Coronary Anatomy
Planes

Grossman
Coronary Anatomy
Planes

Grossman
Estimation of Stenosis

50% Diameter (75% Area)

70% Diameter (90% Area)

90% Diameter (99% Area)
References

